If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+16x-1=0
a = 64; b = 16; c = -1;
Δ = b2-4ac
Δ = 162-4·64·(-1)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{2}}{2*64}=\frac{-16-16\sqrt{2}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{2}}{2*64}=\frac{-16+16\sqrt{2}}{128} $
| 7x-1+20x=180 | | 64x2+16x-1=0 | | 9t=99 | | 3p=-99 | | 4(-9x+3)=10 | | 4d-5=2(d-3)+2d+1 | | 27-2x=17+8x | | -9(v+3)+2v+5=6v+12 | | -4u-9=-165 | | .75(g-500)=0.5g | | -4u-9=165 | | 1/3(-3/4x+3)=10 | | 56=1.4×t | | 2/5=6y | | a-2+3=-2+11 | | -5y-3=112 | | 9=3g−15 | | 6(-8x+1)-4x=-2 | | 8/12=3x/12 | | 0.5g=g-500(0.75) | | -4(9x+4)-5x=4 | | -5y-8=-208 | | 135=x^2+15 | | -7+6x+x=119 | | -5y-8=208 | | (4*19)+v-37=2v+19 | | 3=t+179 | | -6p+7=181 | | 6s+1=6s | | 9+6x=-3 | | k+155=9 | | 5c+14=c+30 |